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THE DETERMINATION OF A STABILITY INDICATIVE FUNCTION 

FOR LINEAR SYSTEMS WITH MULTIPLE DELAYS* 

By John D. Shaughnessy and Yasutada Kashiwagi 

SUMMARY 

A theoretical study is made of the stability of a class of linear differential- 
difference equations with multiple delays. A direct method for determining the exact 
stability boundaries for homogeneous, linear differential-difference equations with con- 
stant coefficients and constant delays is formulated. This formulation results in a sta- 
bility indicative function, depending on a single parameter, which determines the number 
of roots of the transcendental characteristic equation that have positive real parts.  It is 
proved that the system is stable i f  and only i f  this function has a value of zero. 

A second-order system with delays in  the velocity and position feedback terms is 
considered as an example, and the stability regions for this system are determined for a 
range of delays and coefficients. It is observed that introduction of a delay has a definite 
destabilizing effect on the system, and introduction of a second delay has a compounding 
effect to further reduce stability. However, this example clearly illustrates that certain 
combinations of delays can stabilize an unstable system. This phenomenon is discussed 
from a theoretical point of view. 

INTRODUCTION 

Time delays o r  retarded actions a r e  present in modern problems of guidance and 
control and the dynamics of manned and unmanned space vehicles. The effect of such 
delays is the subject of this paper. These phenomena may occur in several different 
ways; for example, in remote control of distant space vehicles the communications delay 
can adversely affect the stability of the overall control system. (See ref. 1.) Time 
delays in the engine response of large jet transports can seriously affect the handling 
qualities of the aircraft. In manned systems, lagging commands caused by slow human 
response can cause a normally stable system to become unstable. Hypervelocity entry 

* Most of this material was included in a thesis entitled "Stability of Linear Systems 
With Multiple Delays" submitted by John D. Shaughnessy (with Yasutada Kashiwagi as 
thesis adviser) in  partial fulfillment of the requirements for the degree of Master of 
Science in Aerospace Engineering, Virginia Polytechnic Institute, May 1967. 



vehicles can lose aerodynamic stability as a, result of flow-field lags caused by the space- 
craft motions and ablation. (See ref. 2.) As a final example, combustion delays in rocket 
motors can lead to erratic or intermittent running, possibly terminating with an explosion 
of the motor. (See ref. 3.) References 4 and 5 are comprehensive bibliographies of 
works published before 1960 that pertain to time-lag systems. Reference 6 contains a 
general discussion of the existence and stability of solutions of differential-difference 
equations. 

As of this writing there is no straightforward or  practical method for determining 
the stability characteristics of linear systems with multiple time delays. However, it 
was suggested in  reference 7 that the stability indicative function for linear systems with 
a single delay, introduced in reference 8, could be extended to include systems with multi- 
ple delays. The subject of this report is the extension of the stability indicative function 
to include such systems. 

The mathematics of delay problems often results in the so-called differential- 
difference equations, which are similar in several respects to ordinary differential equa- 
tions; however, there a r e  significant dissimilarities. It is easy to show that a linear 
differential-difference equation with constant coefficients is formally like an ordinary 
differential equation of infinite order. 
differential-difference equation obtained by using the classical Laplace transformation 
will be of infinite degree and will necessarily have a countably infinite number of char- 
acteristic roots. Another important distinction between ordinary differential equations 
and differential-difference equations is in the initial conditions. 
difference equations, initial functions rather than initial constants must be specified. 

Thus, the characteristic polynomial for the 

For the differential- 

As will be shown, the stability of a large class of linear time-delay problems may 
be obtained by determining whether any roots of the characteristic equation have positive 
real  parts. Even though these systems have an infinite number of characteristic roots, 
it is possible to determine how many of these roots have positive real parts. In this paper 
a method will be formulated for finding the stability of these systems in terms of the time 
delays and the coefficients of the differential-difference equations. 

SYMBOLS 

A real, positive constant 

ambn real  constants 

f l,f2 functions of w defined by equations (49) and (50) 
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functions of s defined by equation (5) 

stability indicative function 

positive integer 

positive integer 

characteristic function 

real part  of L( o+iw) 

imaginary part of L(o+iw) 

positive integer 

positive integers 

minimum 

positive integers 

positive integer 

Laplace transform variable 

position time delay 

velocity time delay 

nondimensional time 

dependent variable 

positive integer 

particular value of (T 

particular value of o 

3 



c real  constant 

0 set of critical values 8% 

Oo,81, . . . 

80,81, . . . 
0 real part  of s 

7 time 

nondimensional time delays 

critical values of Oo,81, . . . * *  

0 real constant 

0 imaginary part of s 

W* critical value of w 

Mathematical notation: 

a rg  s argument of s 

closed interval a 2 t 2 b b b l  

semiclosed interval a 5 t < b hb) 
i J-1 

sgn x sign of x: x/lxl 

c.lp1 set of x's  having property P 

x(n) (t) nth derivative of x with respect to t 

A Jacobian determinant 

E is an element of 

A bar over a symbol denotes the prescribed value. 
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STABILITY OF LINEAR SYSTEMS WITH MULTIPLE DELAYS 

The following form of homogeneous linear differential-difference equations with 
constant coefficients and constant delays will be considered: 

+ . . . + aox(t) + box t - eo) = o ( 
Equation (1) may be expressed more compactly as 

The coefficients an and bn a re  real constants and the constant delays 8, are 
nonnegative finite values and are not necessarily distinct. By using the Laplace trans- 
formation, the characteristic equation of equation (2) is found to be 

n=O 

where s = o + io (o  and w are real variables). 

Pontryagin (ref. 9) has shown that i f  a N  = 0 ,  bN # 0,  and 8N > 0,  the system is 
unstable. In reference 10 it is shown that i f  a N  # 0, bN # 0, and 8N > 0,  the system 
may be unstable even though all characteristic roots of equation (3) have negative real  
parts. These two cases will not be considered; rather, an examination will be made of 
the case where aN # 0 and bN = 0,  written as . 

N N- 1 - 8,s L(s) = 1 ansn + 1 bnsne = o  
n=O n=O 

Because of the infinite-degree nature of equation (4), exact determination of the 
characteristic roots is obviously impossible; however, the number of roots with positive 
real parts can be determined. Theorem 1 of the appendix can then be employed to 

5 



determine the stability of the system. If stability boundaries are desired, the number of 
roots with positive real parts is determined as a function of the parameters of interest. 

Before entering the development of this idea, several existing stability cri teria a r e  
considered. The Routh-Hurwitz stability criterion clearly cannot be used with 
differential-difference equations. The Nyquist criterion can be used with only limited 
success because, as pointed out in reference 8, there is a question regarding the order 
of the characteristic equation which may lead to contradictory results. Also, stability 
boundaries would be quite difficult to obtain. Pontryagin (ref. 9) gives necessary and 
sufficient conditions for stability of linear systems with delays, but the delays must be 
integral multiples of each other. Finally, the Lyapunov stability criterion is applicable 
to linear as well as nonlinear differential-difference equations (see refs. 6, 11, and 12); 
however, the resulting stability boundaries depend on the Lyapunov function used and 
oftentimes do not give the largest region of stability. 

It was pointed out above that, in general, each characteristic root of equation (4) 
cannot be located, but the number of roots having positive real parts can be determined. 
Further, by theorem 1 of the appendix, the system is stable i f ,  and only i f ,  this number 
is zero. Before developing the method for calculating the number of roots that lie in the 
right half of the s-plane, some important aspects of this modified root-locus technique, 
extended to delay systems and first presented in  reference 8, should be mentioned. 

Considerable information can be realized by studying a periodic solution. When 
some of the roots (nonmultiple) of equation (4) lie on the imaginary axis and the rest lie 
in the left half-plane, a periodic solution will be obtained. These pure imaginary roots 
correspond to intersections of the root loci of equation (4) with the imaginary axis. The 
root loci are the plots of the variations of the roots of equation (4) with changes in a 
single parameter, say an arbitrary delay ek, from zero to its maximum value, while all 
other delays are fixed. The values of the parameter that correspond to an intersection of 
a root locus with the imaginary axis will be denoted as critical values 0;. Also a point 
(O,iw*) in the s-plane will be denoted as a critical point. It will be shown that, in general, 
the number of critical values will be zero or countably infinite and these critical values 
can be found by replacing s with io*  in equation (4). If there a re  an infinite number 
of critical values, say 8* < 8* < .  . . < e* < . . . (where the subscripts 1, 2, . . ., 
I, . . . indicate the different critical values of Bk), then the stability of the system 
remains unchanged in the interval o 2 8k < 8* 

so far, nothing is known about the behavior of the root loci at the intersections at s = iw*. 

k, l  k,2 k,l 

but is unknown for dk 2 e* because, 
k , l  k , l  

The statements regarding the behavior of the root loci near the critical points will 
now be considered in more detail. This analysis follows directly from reference 8. A 
system which is stable when 8k = 0 is now considered, and it is supposed that there are 
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two critical values 8" < 8* for ek E where A is a real, positive constant. k , l  k,2 
Thus the system is stable for 0 S % < but the stability is not known for 2 0: 9 1. 

There are several ways in which the root locus might intersect the imaginary axis 

for 8k E [O,A]. Figure 1 illustrates three possible 

cases. Just  the upper half of the s-plane is considered, since the loci are symmetric 
with respect to the real axis. If the loci have the form in figure l(a), the system is 

and unstable for 8* < 8k S A. In the case of figure l(b), the 

and ek,2 5 8k 5 A but unstable for e* 

* * when 8k = ek,J and 8k = 8k,2 

* 
* k, l  

stable for 0 2 8k 2 6k,l 
* system is stable for o 5 % 2 e* < 8k < ek 2. 

In figure l(c), the system is stable for 0 5 €Jk 5 A. Even if  all three cases have the same 
critical values e* and these cases represent different stability situations for 

k,l k,l 9 

k, l  
< 8k 5 A. Thus it is clear that in order to investigate the stability of systems 

described by equation (4), it is not sufficient to find only the critical values of a parame- 
ter. If only the critical values 

system, then all that can be said is that the system has the same stability characteristics 
for o 2 8k<  e* where e* k,l ek,2 < 0 . < 8 

entirely possible for delays to make stable systems unstable and unstable systems stable. 

In general, if the stability of a system with delays is to be determined for ek E Bk,l, 

further information such as root loci directions at the critical points must be obtained. 

. . ., 8&, . . . are known for the given 

* as for 8k = 0. Thus it is k,l < * * .) * 
k, l  ( 

, [ *  4 
Calculation of the critical values and determination of the directions of the root 

loci at critical points are now considered, The characteristic equation can be written in 
the form 

L(s) = Hl(s) - H2(s)e-'kS = 0 (5) 

where 

and 

H ~ ( s )  = - b p k  
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A 

A 

a 

(a) System stable for o 2 6k 2 e:,l and unstable for e;,1 < @k 4 A. 

A 

(I 

(b) System stable for o I @k 2 e;,] and e;,2 2 ek 2 A but unstable for e;,] < 8k < 

(I 

(b) System stable for o I @k 2 e;,] and e;,2 2 ek 2 A but unstable for e;,] < 8k < 

(c) System stable for 0 I @k 2 A. 

Figure 1.- Behavior of root foci in the  neighborhood o f  cr i t ical  points (after ref. 8). 
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If simple pure imaginary 
constant w* such that 

characteristic roots exist, there is at least one real positive 

* *  -i 8kw 
L(iw*) = Hl(iw*) - H~(iw*)e = o  

and 

where the superscript * 
divided by H2(iw*). If 

indicates critical values as before. Equation (6) may be 
H2(iw*) = 0, then Hl(io*) = 0 and the stability of the system 

does not depend on 8k; this case is not of interest here. Thus 

From equation (7), the critical values of 8k satisfy 

H 1 (iw*) 
H2(iw*) 

H 1 (io*) 

w* H2(iw*) 
a rg  * o k =  -- 

In general, the function Hl(iw*) will contain trigonometric functions of w*, and 
equation (8) will not necessarily yield an explicit expression for w*. If an explicit 
expression for w* cannot be obtained, an iteration technique will locate the w* values. 
In general the maximum value of w* for the iteration will have to be determined sep- 
arately. The number of critical values of & is zero or countably infinite, as can be 
seen in equation (8), since the various possible values of 8k"* differ by integral multi- 
ples of 27r. If the number of critical values is zero, the delay 8k does not affect the 
stability of the system, since the absence of critical values means that no roots lie on the 
imaginary axis for that range of 8 k  If there are an infinite number of intersections, the 
way in which the loci intersect the imaginary axis for different critical values of 8k 
must be found. 

* 

There are three possible ways a root locus can intersect the imaginary axis. These 
cases are illustrated in figure 2. In case (a) the loci cut from the right half-plane to the 
left half-plane. In case (b) the loci cut from left to right. In case (c) the loci do not cut 
across  the imaginary axis but do touch it. 
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iw 
e = C O  
k 

ek = o 

U 

(a) Loci move from right to left as 8k increases. 

iw 
g = w  
k 

e = o  k 

U 

(b) Loci move from left to right as 0k increases. 

(c) Loci do not cross the imaginary axis. 

Figure 2.- Possible root loci at critical points (after ref. 8). 
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The problem of finding how the root loci intersect the imaginary axis is now con- 
sidered. Since 8k is taken by itself, the results of reference 8 may be extended to this 
analysis as follows. The behavior of the root loci at critical points (i.e., how they inter- 
sect the imaginary axis) can be determined by finding both the sign of the derivative 

dMko 
Mk 

dek 

# 0 and the value of Mk, where Mk is defined as 

e,=ec 

or  cr(m)(ec)=~ for m = I, 2 , .  . ., Mk - 1 and cr (Mk) (0;) # 0. (The superscript in 

parentheses denotes the mth derivative.) If a root locus cuts across the imaginary axis 
from left to right, then 

and 

Mk = Odd number J 
If a root locus cuts across the imaginary axis from right to left, then 

and 

Mk = Odd numberJ 

Finally, if a locus intersects but does not cut across the imaginary axis, 

Mk = Even number (10c) 

The quantity d"k)(O$ is determined as follows. Substitution of s = cr + io into 
equation (5) yields 

-0k(o+iw) L(o+iw) = Hl(cr+iw) - H2(u+iw)e 

= O  (11) 

11 



Then it is clear that the root loci satisfy 

In order to find the derivative of o with respect to 8k, equations (12) and (13) a re  
differentiated with respect to 8k to yield 

In terms of the Jacobian determinant, 

and 

where 

J 

> O  
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and 

In reference 8 it is shown that the inequality in equation (17) will hold as long as the prob- 
lem is well defined; that is, if  aN is not equal to zero and bnBn (n = 0, 1, . . ., N - 1) 
a r e  not all equal to zero. Thus, except for the case of branch points (referred to as crit- 

= 0, the derivatives - do and 
dek 

ical points in complex variable theory) where 

- given by equations (15) and (16) will exist. 
dek 

do 
dek 

If - = o at 8k = e: (note vertical tangent to root loci at critical points in 

figs. 2(a) and 2(b)), then Mk > 1 and higher derivatives must be found in order to 
describe the root locus behavior at critical points. These higher derivatives are found 
from the following expressions: 

for m > 1. 
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Thus the value of Mk and the sign of the derivative cr(Mk)(f3c) which are neces- 
sary for determining the behavior of the root loci at critical points may now be found by 
using equations (9), (15), and (20). The critical values of 8k a r e  found by using equa- 
tions (8) ,  as previously discussed. 

STABILITY INDICATIVE FUNCTION FOR LINEAR SYSTEMS 

WITH MULTIPLE DELAYS 

By using the results of the preceding analysis, the stability indicative function can 
now be formulated for linear systems with multiple delays whose characteristic equation 
has the form of equation (4), repeated here for convenience: 

It is noted that theorem 2 of the appendix insures that the stability characteristics 

of the system L(s) = 0 are, in the limiting case, those of L(s) = 0 for positive 

values of 8k << 1. If values of 8, (where n = 0, . . ., N - 1, and n # k) are fixed and 
8, is a parameter, and if the number of roots in the right half-plane for equation (4) with 
8k = 0 is known, then the number of roots in the right half-plane for equation (4) can be 
determined as a function of 8k. This follows from theorem 2 together with the fact that 
the root loci are continuous. The remaining problem is that, in general, the number of 

roots of L(s) I ek=o = 0 that lie in the right half-plane is not known for the case of multi- 

ple delays. A technique is now developed for determining this number. 

Initially all delays are set equal to zero, and the number of roots of the resulting 
Nth-degree polynomial having positive rea l  parts and nonnegative imaginary parts is 
readily found. At this point one parameter, say eo, is introduced and is allowed to vary 
from zero to its prescribed value &J. If critical values of 80 a r e  found (by using 

eqs. (8)) in the interval 0 5 80 S80, say 80 1 < 00,2 < . . . <eo, then starting with the 

M smallest value, eo,1, 
cussed. Then, by using equations (lo), it is determined whether a locus of characteristic 
roots of this system goes into or comes out of the left half-plane as 80 is increased 
beyond Because of symmetry, only the upper half-plane need be considered. The 

* * 

and sgn CJ (Mo,l) (8;),1) are determined as previously dis- * 
071 
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next critical value, 6$,2, is considered, and M and sgn cr( Mo,2) (8:,2) are found as 092 
before. Again equations (10) are used to determine the behavior of the root locus at 
80 = 60,2. After this procedure, it will be known precisely how many roots lie in the 
upper right half-plane when 60 = eo. The next parameter, say 81, is considered with 
60 = ?o and all other delays equal to zero. Now 01 is allowed to vary from zero to 

61 and each critical value is taken account of as before, so that when 61 = 61, the num- 
ber  of roots in the upper right half-plane will be known. This procedure is continued 
until only 6k remains. 

* 
- 

- - 

At this point, the number of roots of L(s) I = 0 that have positive real parts 

and nonnegative imaginary parts (i.e., that lie in the upper right half-plane) will be known. 
The stability characteristics of equation (4) can now be expressed in terms of 6k. To do 

this, 6k is allowed to vary from zero to its maximum value, taking account of each crit- 

ical value and finding Mk and sgn (T (Mk)(6i) as above. If there a r e  no roots of 

L(s)l 

when Bk = 0. The system remains stable as 8k increases from zero until the first 

critical value is reached where Mk is odd and (T (Mk)(6g) is positive; beyond this point 

the system becomes unstable. If more roots pass into the first quadrant as 8k is 
increased further, an account of the number is kept. The system remains unstable until 
all these roots leave the first quadrant as 6k becomes larger still. On the other hand, 

if  some of the roots of L(s) = 0 do lie in the first quadrant, then by theorem 1 the 

system is unstable for 6k = 0. As before, the system remains unstable so long as there 

are any roots having positive real  parts and nonnegative imaginary parts. Thus by keeping 
account of the number of roots in the first quadrant as 6k is increased from zero, the 
stability characteristics of the system are determined in terms of the parameter 8k 

This concept is now formulated into the "stability indicative function. " As indicated 

= 0 in the first quadrant of the s-plane, then by theorem 1 the system is stable 
6k=o 

I 6k=o 

above, all delays are set equal to zero in equation (4) to form the Nth-degree polynomial 

- 
L(s) = 

- - 
N- 1 

aNsN + 1 (an + bn)sn = 0 
n=O 
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Then z, the number of roots of x ( s )  = 0 that lie in the first quadrant of the s-plane, 
may be found by classical techniques. Without loss of generality it is assumed that 
eo # 0. Then 81, . . ., 8N-1 are set equal to zero to form 
- 

- 
Next zo, the number of roots of Lo(s) = 0 that lie in the first quadrant when 80 = 00, 
is found. Since at each step in this procedure the number of roots in the first quadrant 
will be known initially, and since the loci are continuous as mentioned above, the "stability 
indicative function" for systems with a single delay introduced in reference 8 may be used 
to find ZO, z1, and so forth. 

Now zo is equal to z plus any roots of Lo(s) = 0 that pass into the first quad- 
rant of the s-plane minus any that leave as 80 goes from zero to BO. As explained 

earlier, the value of Mo and the sign of D ( ~ O ) ( € J ~ )  together determine the behavior of 
the root loci at the critical points. Thus, the stability indicative function for 80 is 
given by 

I(@) = z + sgn D 

where 

so that 

zo = I(Bo) 

In order to clarify further the meaning of I(f30) and I , the following example 
is considered. It is assumed that there exists a system having z = 1 and the first five 
critical values of 00 such that 0 < 0;,1 < e0,2 < 

of the root loci is described by figure 3(a), then the function I(0o) would have the form 
shown in figure 3(b). It is clear that I(0) = z = 1 and (30) = zo = 0. Thus it is seen 
that the delay 50 has made this normally unstable system stable. In this example the 
root loci are shown only for clarity; it must be remembered that in applying the stability 
indicative function no attempt need be made to plot the root loci. Instead, the stability 

* * * < 80,4 < e:,, <BO. If the behavior 
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* 
%3 

(a) Behavior of the root loci for 0 80 2 8,. 

3 

1 

(b) Stability indicative function in terms of 80. 

Figure 3.- Critical values of 80 and the stability indicative function l(8o). 
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indicative function is the only quantity of interest and may be plotted o r  tabulated, for 
example. 

The stability indicative function for systems with multiple delays can now be - 
developed. Another nonzero delay, say 01 with prescribed value 81, is considered. 
Here L1(s) = 0 is formed as 

and zl, the number of roots of Ll(s) = 0 that lie in the first quadrant of the s-plane, 
is found. The value of z1 is determined from the stability indicative function for 01 
given by 

where 

o1 = el o 5 el 2 el [ * I  * 3 
so that 

z1 = I(&) 

- 
The next delay, say 02, is considered. Here L2(s) = 0 is formed with eo = eo 

and 01 = 01; and 22, the number of roots of L ~ ( s )  = 0 that lie in the first quadrant of 
the s-plane, is found by using the stability indicative function. This procedure is con- 
tinued, considering one delay at a time, until &, the given parameter, is the only one 
remaining. 

= 0 that have positive real parts and 
ek=o I At this point the number of roots of L(s) 

nonnegative imaginary parts is known. Then z is defined as the number of character- 
istic roots of L(s) 

negative. Now Z can be expressed in terms of the above results as 

= 0 whose real parts a r e  positive and imaginary parts are non- 
8k=o I 
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Stability criterion.- If the stability indicative function for the parameter is 
constructed as 

then the system whose transcendental characteristic equation is L(s) = 0 (eq, (4)) is 
stable if 

and unstable i f  

Proof: By using equations (10) together with theorem 2 of the appendix, it is shown 
that the function I(eQ given in equation (32) indicates the number of characteristic roots 
of equation (4) whose real  parts are positive and imaginary parts are nonnegative for a 
given value of 8 k  Hence, from theorem 1 of the appendix, if I (&) = 0 the system is 
stable, and if I(&) > 0 the system is unstable. 

STABILITY OF A SECOND-ORDER LINEAR SYSTEM WITH MULTIPLE DELAYS 

In order to illustrate the application of the stability indicative function for linear 
systems with multiple delays, the following differential-difference equation is considered: 

The position delay Tp is assumed to have a prescribed value and the stability 
boundaries of this system are to be found in terms of the velocity delay Tv and the 
parameter <. To be compatible with the results of reference 8 ,  which includes the 
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stability boundaries of equation (35) for the three cases wh 
Tp = 0, equation (35) is normalized as follows: 

Let 

t = 517 eo = ~ ~ 5 1  

Then equation (3 5) becomes 

3 7) 

The corresponding characteristic equation is immediately obtained as 

~ ( s )  = s 2  + 25se-'lS + e-'Os = o  

According to the theory, the first step in finding the stability characteristics o 
system is to set the delays 80 and 81 equal to zero and find the roots of the res 
second-degree polynomial. With eo = 8 1  = 0 there results 

- 
L(s) = s2 + 25s + 1 = 0 (3 9) 

whose characteristic roots a r e  

It is clear that for 5 > 0 there is no root in the first quadrant of the s-plane. Thus, 
z = 0 for 5 20. 

Since 81  is the normalized parameter of interest, the next step is to set 81 
equal to 0 and obtain 

- eOs 
L ~ ( s )  = s2 + 25s + e = o 

By using equations (8) the critical values of 80 and w for equation (41) are found 

e; = ~ [ ~ - l $  o* + 2 p ~  (p = 0, 1, 2, * . .) (43) 
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The value of MO and the sign of the derivative a (Mo)(O:) are now found by using equa- 
tions (9), (15), (16), and (20). From equations (12), (13), and (41), 

LR(a,w,@) = a2 - w2 + 2 ~ 0  + e-'O*cos e0w 

LI(o,w,eo) = 2w(a + 5 )  - e-'Oasin eow 
(44) 

Then 

Clearly 

so that Mo = 1 and sgn a (Mo)(8;)) = +l. Then for C > 0 it is found from equations (24) 
and (26) that 

20 = 0 

for 

1 2c o 2 eo 5 - tan-1 - 
w* w* 

and 

=o = P 
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for 

1 
w* 
- 

- 
Now the parameter 81 is considered, with 00 = 80 = TpQ. Equation (38) becomes 

By using equations (8), the expressions for the critical values of 81 and w are found 
as 

(w*)4 - 4<2(w*)2 - 2(0*)2COS Bow* + 1 = 0 

and 

(4 7) 

(p = 0, 1, . . .) (48) 

The critical values of w* a re  found for different values of < by iterating equation (47) 
from w = wmin to w = urnax. Approximate values for wmin and wmax are found 
from equation (47) by solving for cos 8ow* and finding the intersections of 

f+) = cos 800 

with 

(49) 

by a graphical technique. 

The value of M 1  and the sign of the derivative O(Ms(6;) are now determined. 
From equation (46), 
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and 

da  Here it is assumed that M = 1; if - 
de l  

Then 

da - 
dB1 

= 0, then M # 1 and higher derivatives 
* el=el 

Equation ( 5 3 )  is evaluated by using the given value of 30 and the critical values of w* 
found from equations (44). 

The stability boundaries of the system described by equation (35 )  may now be found 
by setting the stability indicative function for el equal to zero, where 
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The results of this example are slightly more 

the abscissa represents a region of stability for the particular value of 30 shown. It 
can be seen that when 81 = 1 and 5 = 1 the system is unstable for 0 520 S 1.8 but 
becomes stable for 2.0 270 5 2.4; that is, introduction of the second delay 80 has sta- 
bilized the normally unstable system. Figure 7 shows the destabilizing effects of the 
second delay 80 and indicates that the regions of stability vanish completely for 80 
greater than approximately 0.3. Figure 8 shows a further reduction in the maximum 
value of 30 for which the system can be stable, Finally, it is noted that if the system 
is unstable for a given set of values in the (<,81,-80)-space, say (0.1,4.0,0.1), the unstable 
system can be made stable by increasing 81 to about 6; but increasing 81 to the range 
shown in figure 8 or beyond will not stabilize the system. 

- 

CONCLUDING REMARKS 

A theoretical study has been made of the stability of a class of linear differential- 
difference equations with arbitrary multiple delays. A direct method for determining the 
exact stability boundaries for homogeneous, linear differential-difference equations with 
constant coefficients and constant delays was formulated. The formulation resulted in  a 
stability indicative function depending on a single parameter. This function determines 
the number of roots of the transcendental characteristic equation that have positive real 
parts for  a given set of coefficients and delays, and it is proved that the system is stable 
i f ,  and only if ,  this function has a value of zero. 

mple, and the stability 
ients. It was 
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introduction of a second delay has a compounding effect to further reduce stability. How- 
ever, this example clearly illustrates that certain combinations of delays can stabilize an 
unstable system. 

Langley Research Center , 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., September 20, 1968, 
124-07-02-16 -23. 
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APPENDIX 

THEOREMS FOR THE DEVELOPMENT OF THE STABILITY INDICATIVE FUNCTION 

Theorem 1 

The homogeneous linear system whose characteristic equation is 

N N- 1 
n -8,s 

L(s) = 1 anSn + 1 bns e = o  
n=O n=O 

(where the coefficients an and bn are real  constants and the constant delays On are 
nonnegative finite values and are not necessarily distinct) is asymptotically stable i f ,  and 
only i f ,  all the characteristic roots have negative real parts. 

Proof.- See reference 11. 

Theorem 2 

For a sufficiently small positive value of 8k with bk # 0, the finite roots of 
L(s) = 0 can be made arbitrarily close to the finite roots of L ( S ) I ~ ~ = ~  = 0, and there 

exist an infinite number of roots whose real parts are negatively infinite. 

Proof.- Express the roots of L(s) = 0 a s  s = o + iw, consider the following 
assumptions, and prove the theorem by contradiction. 
- 
Case 1: lim o =  a and lim w = p where a and p are finite constants. 

8k-0 8,-0 

Thus, 

k- 1 N- 1 - ens N 
lim L(S) =>an@ + bkSk +>bnsne-ens +)bnsne = o  

8k-0 n=O n=O n=k+l 

= 0 for 1 8k=o 
Hence, we see that the roots of L(s) = 0 are close to the roots of L(s) 

small values of 
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Case 2: lim C T =  a and lim w = o b  where CY is a finite constant. Then 
8k-0 8k-0 

and 

Divide both sides of L(s) = 0 by sN # 0 to get 

or  

aN + 11( an +bne -8,s ) ,n-N = o  
n=O 

If case 2 holds, then each term in brackets is finite and a N  = 0. This result con- 
tradicts the definition of L(s) = 0; hence, case 2 does not hold. 

Case 3: lim CT = +m. Then 
8k-0 

and 

Again, this result requires that a N  = 0. Thus case 3 does not hold, and the only 
other possibility wherein a N  # 0 is that 

lim (T = -03 

%-0 
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